Practice 11-3

Geometric Sequences and Series

Find a_n for each geometric sequence.

2. $a_1 = 20, r = -3, n = 6$ 1. $a_1 = 5, r = 3, n = 6$ **4.** a_8 for $-\frac{1}{250}$, $-\frac{1}{50}$, $-\frac{1}{10}$, ... **3.** $a_1 = -4, r = -2, n = 10$ **6.** $a_1 = 8, r = \frac{1}{2}, n = 9$ **5.** a_{12} for 96, 48, 24, ... **8.** $a_1 = 3, r = \frac{1}{10}, n = 8$ **7.** $a_1 = -3125, r = -\frac{1}{5}, n = 9$

Write an equation for the *n*th term of each geometric sequence.

9. 1, 4, 16, ... **10.** -1, -5, -25, ... **11.** $1, \frac{1}{2}, \frac{1}{4}, \dots$ **12.** -3, -6, -12, ...

Find the sum of each geometric series.

13.
$$\sum_{k=3}^{10} (-4)(-2)^{k-1}$$
 14. $\sum_{k=1}^{8} (-3)(3)^{k-1}$ **15.** $\sum_{k=2}^{32} 9(-1)^{k-1}$

Find a_1 for each geometric series described.

16.
$$S_n = 1550, n = 3, r = 5$$

17. $S_n = 1512, n = 6, r = 2$

18.
$$S_n = 3478.2, r = 2, a_n = 3481.6$$
 19. $S_n = 4860, r = 3, a_n = 3280.5$

- 20. BIOLOGY A culture initially contains 200 bacteria. If the number of bacteria doubles every 2 hours, how many bacteria will be in the culture at the end of 12 hours?
- **21. LIGHT** If each foot of water in a lake screens out 60% of the light above, what percent of the light passes through 5 feet of water?
- 22. INVESTING Raul invests \$1000 in a savings account that earns 5% interest compounded annually. How much money will he have in the account at the end of 5 years?