11-6 Practice

The Binomial Theorem

Expand each binomial.

- 1. $(n + v)^5$
- **2.** $(x y)^4$
- **3.** $(x + y)^6$
- **4.** $(r+3)^5$
- **5.** $(m-5)^5$
- **6.** $(x + 4)^4$
- 7. $(3x + y)^4$
- 8. $(2m y)^4$
- **9.** $(w 3z)^3$
- **10.** $(2d + 3)^6$
- **11.** $(x + 2y)^5$
- **12.** $(2x y)^5$
- **13.** $(a 3b)^4$
- **14.** $(3 2z)^4$
- **15.** $(3m 4p)^3$
- **16.** $(5x 2y)^4$

Find the indicated term of each expansion.

17. sixth term of $(x + 4y)^6$

18. fourth term of $(5x + 2y)^5$

19. eighth term of $(x - y)^{11}$

- **20.** third term of $(x 2)^8$
- **21.** seventh term of $(a + b)^{10}$
- **22.** sixth term of $(m p)^{10}$

23. ninth term of $(r - t)^{14}$

24. tenth term of $(2x + y)^{12}$

25. fourth term of $(x - 3y)^6$

- **26.** fifth term of $(2x 1)^9$
- **27. GEOMETRY** How many line segments can be drawn between ten points, no three of which are collinear, if you use exactly two of the ten points to draw each segment?
- **28. PROBABILITY** If you toss a coin 4 times, how many different sequences of tosses will give exactly 3 heads and 1 tail or exactly 1 head and 3 tails?