\qquad
\qquad
\qquad

11-6 Practice

The Binomial Theorem

Expand each binomial.

1. $(n+v)^{5}$
2. $(x-y)^{4}$
3. $(x+y)^{6}$
4. $(r+3)^{5}$
5. $(m-5)^{5}$
6. $(x+4)^{4}$
7. $(3 x+y)^{4}$
8. $(2 m-y)^{4}$
9. $(w-3 z)^{3}$
10. $(2 d+3)^{6}$
11. $(x+2 y)^{5}$
12. $(2 x-y)^{5}$
13. $(a-3 b)^{4}$
14. $(3-2 z)^{4}$
15. $(3 m-4 p)^{3}$
16. $(5 x-2 y)^{4}$

Find the indicated term of each expansion.
17. sixth term of $(x+4 y)^{6}$
19. eighth term of $(x-y)^{11}$
21. seventh term of $(a+b)^{10}$
23. ninth term of $(r-t)^{14}$
25. fourth term of $(x-3 y)^{6}$
18. fourth term of $(5 x+2 y)^{5}$
20. third term of $(x-2)^{8}$
22. sixth term of $(m-p)^{10}$
24. tenth term of $(2 x+y)^{12}$
26. fifth term of $(2 x-1)^{9}$
27. GEOMETRY How many line segments can be drawn between ten points, no three of which are collinear, if you use exactly two of the ten points to draw each segment?
28. PROBABILITY If you toss a coin 4 times, how many different sequences of tosses will give exactly 3 heads and 1 tail or exactly 1 head and 3 tails?

