$\qquad$
$\qquad$

## 11-1 Practice

## Sequences as Functions

Find the next four terms of each arithmetic sequence. Then graph the sequence.

## 1. $5,8,11, \ldots$


2. $-4,-6,-8, \ldots$

|  | $\boldsymbol{y}$ | $\boldsymbol{y}$ |  |  |  |  |  |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{O}$ |  |  |  |  |  |  |  |
| -2 |  |  |  |  |  |  |  |

Find the next three terms for each geometric sequence. Then graph the sequence.
3. $\frac{1}{10}, \frac{1}{2}, 2 \frac{1}{2}, \ldots$

4. $81,27,9, \ldots$


Determine whether each sequence is arithmetic, geometric, or neither. Explain your reasoning.
5. $57,456,3648,29,184, \ldots$
6. $-47,-37,-25,-13, \ldots$
7. $4,9,16,25,36, \ldots$
8. $824,412,206,103, \ldots$
9. EDUCATION Trevor Koba has opened an English Language School in Isehara, Japan. He began with 26 students. If he enrolls 3 new students each week, in how many weeks will he have 101 students?
10. SALARIES Yolanda interviewed for a job that promised her a starting salary of \$32,000 with a $\$ 1250$ raise at the end of each year. What will her salary be during her sixth year if she accepts the job?

