\qquad

14-2 Practice

Verifying Trigonometric Identities

Verify that each equation is an identity.

1. $\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos ^{2} \theta}=\sec ^{2} \theta$
2. $\frac{\cos ^{2} \theta}{1-\sin ^{2} \theta}=1$
3. $(1+\sin \theta)(1-\sin \theta)=\cos ^{2} \theta$
4. $\tan ^{4} \theta+2 \tan ^{2} \theta+1=\sec ^{4} \theta$
5. $\cos ^{2} \theta \cot ^{2} \theta=\cot ^{2} \theta-\cos ^{2} \theta$
6. $\left(\sin ^{2} \theta\right)\left(\csc ^{2} \theta+\sec ^{2} \theta\right)=\sec ^{2} \theta$
7. PROJECTILES The square of the initial velocity of an object launched from the ground is $v^{2}=\frac{2 g h}{\sin ^{2} \theta}$, where θ is the angle between the ground and the initial path h is the maximum height reached, and g is the acceleration due to gravity. Verify the identity $\frac{2 g h}{\sin ^{2} \theta}=\frac{2 g h \sec ^{2} \theta}{\sec ^{2} \theta-1}$.
8. LIGHT The intensity of a light source measured in candles is given by $I=E R^{2} \sec \theta$, where E is the illuminance in foot candles on a surface, R is the distance in feet from the light source, and θ is the angle between the light beam and a line perpendicular to the surface. Verify the identity $E R^{2}\left(1+\tan ^{2} \theta\right) \cos \theta=E R^{2} \sec \theta$.
