14-3 Practice

Sum and Difference of Angles Identities

Find the exact value of each expression.

1. cos 75°	2. cos 375°	3. sin (-165°)
4. sin (-105°)	5. sin 150°	6. cos 240°
7. sin 225°	8. sin (-75°)	9. sin 195°

Verify that each equation is an identity.

10. $\cos(180^\circ - \theta) = -\cos \theta$

11. $\sin(360^\circ + \theta) = \sin \theta$

12. $\sin (45^\circ + \theta) - \sin (45^\circ - \theta) = \sqrt{2} \sin \theta$

13.
$$\cos\left(x - \frac{\pi}{6}\right) + \sin\left(x - \frac{\pi}{3}\right) = \sin x$$

- 14. SOLAR ENERGY On March 21, the maximum amount of solar energy that falls on a square foot of ground at a certain location is given by $E \sin (90^\circ \phi)$, where ϕ is the latitude of the location and E is a constant. Use the difference of angles formula to find the amount of solar energy, in terms of $\cos \phi$, for a location that has a latitude of ϕ .
- **15. ELECTRICITY** In a certain circuit carrying alternating current, the formula $c = 2 \sin (120t)$ can be used to find the current *c* in amperes after *t* seconds.
 - **a.** Rewrite the formula using the sum of two angles.
 - **b.** Use the sum of angles formula to find the exact current at t = 1 second.

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.