\qquad

14-3 Practice

Sum and Difference of Angles Identities

Find the exact value of each expression.

1. $\cos 75^{\circ}$
2. $\cos 375^{\circ}$
3. $\sin \left(-165^{\circ}\right)$
4. $\sin \left(-105^{\circ}\right)$
5. $\sin 150^{\circ}$
6. $\cos 240^{\circ}$
7. $\sin 225^{\circ}$
8. $\sin \left(-75^{\circ}\right)$
9. $\sin 195^{\circ}$

Verify that each equation is an identity.
10. $\cos \left(180^{\circ}-\theta\right)=-\cos \theta$
11. $\sin \left(360^{\circ}+\theta\right)=\sin \theta$
12. $\sin \left(45^{\circ}+\theta\right)-\sin \left(45^{\circ}-\theta\right)=\sqrt{2} \sin \theta$
13. $\cos \left(x-\frac{\pi}{6}\right)+\sin \left(x-\frac{\pi}{3}\right)=\sin x$
14. SOLAR ENERGY On March 21, the maximum amount of solar energy that falls on a square foot of ground at a certain location is given by $E \sin \left(90^{\circ}-\phi\right)$, where ϕ is the latitude of the location and E is a constant. Use the difference of angles formula to find the amount of solar energy, in terms of $\cos \phi$, for a location that has a latitude of ϕ.
15. ELECTRICITY In a certain circuit carrying alternating current, the formula $c=2 \sin (120 t)$ can be used to find the current c in amperes after t seconds.
a. Rewrite the formula using the sum of two angles.
b. Use the sum of angles formula to find the exact current at $t=1$ second.

